SOCP Reformulation for the Generalized Trust Region Subproblem via a Canonical Form of Two Symmetric Matrices

نویسندگان

  • Rujun Jiang
  • Baiyi Wu
چکیده

We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric matrices in both the objective and constraint functions. By exploiting the block separability of the canonical form, we show that all GTRSs with an optimal value bounded from below are second order cone programming (SOCP) representable. Our result generalizes the recent work of Ben-Tal and Hertog (Math. Program. 143(1-2):1-29, 2014), which establishes the SOCP representability of the GTRS under the assumption of the simultaneous diagonalizability of the two matrices in the objective and constraint functions. Compared with the state-of-the-art approach to reformulate the GTRS as a semi-definite programming problem, our SOCP reformulation delivers a much faster solution algorithm. We further extend our method to two variants of the GTRS in which the inequality constraint is replaced by either an equality constraint or an interval constraint. Our methods also enable us to obtain simplified versions of the classical S-lemma, the S-lemma with equality, and the S-lemma with interval bounds. Rujun Jiang Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong E-mail: [email protected] Duan Li Corresponding author. Tel.: +852-39438323, Fax: +852-26035505 Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong E-mail: [email protected] Baiyi Wu Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong E-mail: [email protected] 2 Rujun Jiang et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On SOCP/SDP Formulation of the Extended Trust Region Subproblem

We consider the extended trust region subproblem (eTRS) as the minimization of an indefinite quadratic function subject to the intersection of unit ball with a single linear inequality constraint. Using a variation of the S-Lemma, we derive the necessary and sufficient optimality conditions for eTRS. Then, an OCP/SDP formulation is introduced for the problem. Finally, several illustrative examp...

متن کامل

یک الگوریتم کارا برای زیر مساله‌ی ناحیه‌ اطمینان توسیع یافته با دو قید خطی

Trust region subproblem (TRS), which is the problem of minimizing a quadratic function over a ball, plays a key role in solving unconstrained nonlinear optimization problems. Though TRS is not necessarily convex, there are efficient algorithms to solve it, particularly in large scale. Recently, extensions of TRS with extra linear constraints have received attention of several researchers. It ha...

متن کامل

Trust Region Subproblem with a Fixed Number of Additional Linear Inequality Constraints Has Polynomial Complexity∗

The trust region subproblem with a fixed number m additional linear inequality constraints, denoted by (Tm), have drawn much attention recently. The question as to whether Problem (Tm) is in Class P or Class NP remains open. So far, the only affirmative general result is that (T1) has an exact SOCP/SDP reformulation and thus is polynomially solvable. By adopting an early result of Mart́ınez on l...

متن کامل

Shape-changing L-sr1 Trust-region Methods

In this article, we propose a method for solving the trust-region subproblem when a limited-memory symmetric rank-one matrix is used in place of the true Hessian matrix. The method takes advantage of two shape-changing norms to decompose the trust-region subproblem into two separate problems, one of which has a closed-form solution and the other one is easy to solve. Sufficient conditions for g...

متن کامل

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016